

![]() |
Don't forget about other sensations. Click here for more … |
Traditionally, we meet this requirement by saying that different bonds and electrons are distinct from each other because they are in different places. But, by the premise of WikiMechanics, we cannot satisfy Pauli's exclusion principle by resorting to a spatial explanation. And also we cannot use any visual sensation to make the distinction either, because the visual sensations used to define dynamic seeds have already been constrained by earlier hypotheses. So instead, we differentiate them by association with different taste sensations. To satisfy Pauli's exclusion principle, electrons $\, \sf{e^{–}}$ are distinguished from each other by their union with various chemical quarks such as



$\begin{align} D^{ \mathbb{B} }_{ \large{\circ}} \equiv H^{ \mathbb{B} } -N^{ \sf{e^{–}} } H^{ \sf{e^{–}} } = \sum_{ \sf{q} \in \mathbb{B}} \Delta n^{\sf{q}} U^{\sf{q}} \end{align}$
Typical Single Bonds
Let us start by associating an acidic quark with one of the electrons in a covalent bonding pair. This simple arrangement is called $\mathbb{B}\small{\sf{(semi \ acidic) }}$. It is the first example of a bond formed predominantly from acidic quarks.
$\large{\mathbb{B}}\small{ \sf{(semi \ acidic) }} \equiv \, \,${ {e–, }, e– }
Single bonds are often indicated using a short line segment. For example, in the chemical structure diagram for $\mathrm{Au}_{\sf{2}} \,$, a diatomic gold molecule, the bond is represented as Au–Au. This is the only ligature defined from just one chemical quark. The archetypal acidic bond involves two acidic quarks like this
$\large{\mathbb{B}}\small{ \sf{( acidic) }} \equiv \, \,${ {e–, }, e– ,
}
This arrangement accurately represents the bond in H–Cl, a strong acid. No more acidic quarks can be added to a pair of electrons without violating Pauli's exclusion principle. So next we consider distinguishing electrons by association with basic quarks
$\large{\mathbb{B}}\small{ \sf{( basic) }} \equiv \, \,${ {e–, }, e– ,
}
This set of quarks and electrons accurately represents the bond in sodium hydroxide, Na–OH, also known as lye. Similar bonds can be defined using ionic and aqueous quarks for molecules of table salt, and water. These bonds are made from groups of quarks that are all the same quark-type. They are very homogeneous, so quark character may extend to molecular character.

Double and Triple Bonds
The single bonds discussed above all involve one pair of electrons. But we may also include more electrons to define double bonds which are made from four electrons. For example, here is a double acidic bond
$\large{\mathbb{B}}\small{ \sf{( double \ acidic) }} \equiv \, \,${ {e–, }, {e–,
} , {e–,
}, {e–,
,
} }
This set correctly describes the bond strength in sulfur dimers, S=S. Here is a double basic bond
$\large{\mathbb{B}}\small{ \sf{( double \ basic) }} \equiv \, \,${ {e–, }, {e–,
,
} , {e–,
,
}, {e–,
} }
The strength of the double-bond in carbon dioxide, O=CO, is correctly represented by this arrangement. And here is a double aqueous bond
$\large{\mathbb{B}}\small{ \sf{( double \ aqueous) }} \equiv \, \,${ {e–, }, {e–,
,
} , {e–,
}, e– }
This bond accurately represents the link between oxygen atoms in the important diatomic gas molecule $\mathrm{O}_{\sf{2}} \,$. Stereochemical quarks have about 1% of the internal-energy of other chemical quarks, but nonetheless, they still play an important logical role by distinguishing between similar bonds. For example consider this bond
$\large{\mathbb{B}}\small{ \sf{(double \ wet ) }} \equiv \, \,${ {e–, }, {e–,
} , {e–,
}, {e–,
} }
which accurately describes the strength of the double-bond in diazine, HN=NH. If we imagine that each single-bond of the pair is formed from one wet-quark and one stereochemical-quark, then there are two distinct possibilities. They can be written as
$\large{\mathbb{B}}\small{ \sf{(double \ wet \ type1) }} \equiv \, \,${ {{e–, }, {e–,
}} , {{e–,
} , {e–,
}} }
$\large{\mathbb{B}}\small{ \sf{(double \ wet \ type2) }} \equiv \, \,${ {{e–, }, {e–,
}} , {{e–,
} , {e–,
}} }
Both of these bonds contain the same quarks, but they are still logically different from each other. And in the laboratory, chemists do indeed find two different forms of diazine
![]() |
and | ![]() |
cis-diazene | trans-diazene |
The distribution of stereochemical quarks is thus associated with geometric isomerism. The forgoing double-bonds all contain just four electrons, but we may also include another pair of electrons to define triple bonds such as
$\large{\mathbb{B}}\small{ \sf{( triple \ wet \ acidic ) }} \equiv \, \,${ {e–, }, {e–,
,
} , {e–,
,
}, {e–,
}, {e–,
}, e– }
The very strong triple-bond in carbon monoxide, C≡O, is correctly represented by this arrangement. And here is another triple-bond that accurately models the link in N≡N, a molecule of nitrogen gas
$\large{\mathbb{B}}\small{ \sf{( triple \ aqueous) }} \equiv \, \,${ {e–, }, {e–,
,
} , {e–,
,
}, {e–,
}, {e–,
}, e–,
}
And some other double and triple bonds

Hydrides
Acidic quarks are featured prominently in models of binary hydrogen compounds. For example, this bond accurately represents the link between hydrogen atoms in $\mathrm{H}_{\sf{2}} \,$, a diatomic molecule of hydrogen gas
$\large{\mathbb{B}}\small{ \sf{( 1) }} \equiv \, \,${ {e–, ,
} , {e–,
,
},
}
The following models give results that are within experimental uncertainty even though observations of the hydrides are so precise that ten quarks are required to include hydrogen deuteride.

Salts and Halogens


Sensory interpretation: All of the bonds discussed here are defined from three distinct classes of sensation; sour, salty and sweet tastes. They may vary independently from each other. So, in an upcoming article, we use these bonds to define a three-dimensional Cartesian coordinate system for making space-time descriptions of molecules. And after that, we stop worrying about Pauli's principle.
Here is a link to the most recent version of this content, including the full text.
![]() |
Atomic Bonds and Molecules |