Classification of Forces
Notice: this page is under construction
Notice: this page is under construction

Definition: the magnetic binding force that holds the quarks in a particle together is

$\begin{align} F_{m} \equiv \frac{ k_{mm} \rho_{m} + k_{em} \rho_{e} + k_{mz} \rho_{z}}{ \rho } k_{\sf{F}} \end{align}$

Definition: the electric binding force

$\begin{align} F_{e} \equiv \frac{ k_{em} \rho_{m} + k_{ee} \rho_{e} + k_{ez} \rho_{z} }{ \rho } k_{\sf{F}} \end{align}$

Definition: the centripetal force

$\begin{align} F_{c} \equiv - \frac{ k_{mz} \rho_{m} + k_{ez} \rho_{e} + \rho_{z} }{ \rho } k_{\sf{F}} \end{align}$

To do: If no work is done on the atom, then orbit is 'stable'

$\partial W^{\mathbf{B}} = 0$

there is an equitable relationship between the centripetal and the electromagnetic forces.

$\begin{align} F_{c}^{\mathbf{B}} = \frac{ F_{m}^{\mathbf{B}} \, \rho_{m}^{\sf{X}} + F_{e}^{\mathbf{B}} \, \rho_{e}^{\sf{X}} }{\rho_{z}^{\sf{X}}} \end{align}$

X $m^{\sf{X}}$ $\overline{p}^{\sf{X}}$ $p^{\sf{X}}$ $\partial W ^{\mathbf{B}}$ Force
photons ethereal $\begin{align} \frac{ h \overline{\kappa}^{\gamma} }{ 2\pi } \end{align}$ $\begin{align} \frac{ h }{ \lambda } \end{align}$ 0 electromagnetic
gravitons ethereal $\begin{align} \frac{ h \tilde{\kappa}^{\sf{F}} }{ 2\pi } N^{\sf{\Gamma}} \end{align}$ $\begin{align} \frac{ h \, N^{\sf{\Gamma}} }{ \lambda^{\sf{F}} N^{\sf{F}}} \end{align}$ 0 gravity
rotating quarks ethereal $\begin{align} \frac{ 2 \pi k_{\sf{F}} }{ h c } \left( 0, 0, 2\rho_{z}^{\mathcal{A}\left( \sf{X} \right)} \right) \end{align}$ $\begin{align} \frac{ 4 \pi k_{\sf{F}}}{ h c } \rho_{z}^{\mathcal{A}} \end{align}$ $F_{z}^{\mathbf{B}} \, \rho_{z}^{\sf{X}}$ weak
electronic quarks imaginary $\left( 0, p_{e}, 0 \right)$ $ppp$ $F_{e}^{\mathbf{B}} \, \rho_{e}^{\sf{X}}$ electrostatic
muonic quarks material $\left( p_{m}, 0, 0 \right)$ $ppp$ $F_{m}^{\mathbf{B}} \, \rho_{m} ^{\sf{X}}$ magnetic
Newtonian particles material $m^{\sf{X}} \, \overline{\sf{v}}^{\sf{X}}$ $m\sf{v}$ $F_{m}^{\mathbf{B}} \, \rho_{m}^{\sf{X}} + F_{e}^{\mathbf{B}} \, \rho_{e}^{\sf{X}} + F_{z}^{\mathbf{B}} \, \rho_{z}^{\sf{X}}$ contact

Right.png Next step: contents.
Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-ShareAlike 3.0 License