Atomic Hydrogen
Atomic Hydrogen
$\Large{ k }$ $\large{ \delta _{\hat{m}} }$ $\large{ \delta _{\hat{e}} }$ $\large{ \delta _{\theta} }$ $\large{ \sf{P}_{\it{k}} }$
1 +1 0 +1 $\sf{2} \bar{\sf{d}} \ \ \sf{\bar{t}} \sf{b} \ \ \sf{2} \sf{m}$
2 0 -1 +1 $\bar{\sf{u}} \ \ \sf{\bar{s}} \sf{c} \ \ \sf{2} \sf{e}$
3 -1 0 +1 $\sf{2} \bar{\sf{d}} \ \ \sf{\bar{t}} \sf{b} \ \ \sf{2} \bar{\sf{a}}$
4 0 +1 +1 $\bar{\sf{u}} \ \ \sf{t} \sf{\bar{b}} \ \ \sf{2} \bar{\sf{g}}$
5 +1 0 -1 $\sf{2} \bar{\sf{d}} \ \ \sf{\bar{t}} \sf{b} \ \ \sf{2} \sf{m}$
6 0 -1 -1 $\bar{\sf{u}} \ \ \sf{\bar{s}} \sf{c} \ \ \sf{2} \sf{e}$
7 -1 0 -1 $\sf{2} \bar{\sf{d}} \ \ \sf{\bar{t}} \sf{b} \ \ \sf{2} \bar{\sf{a}}$
8 0 +1 -1 $\bar{\sf{u}} \ \ \sf{t} \sf{\bar{b}} \ \ \sf{2} \bar{\sf{g}}$

Atomic hydrogen is defined by the union of a proton and an electron, bound together by a magnetic field $\mathcal{M} ^{ \mathbf{H}}$. The magnetic field is represented by

$\mathscr{F}_{\! \it{m}} \left( \mathbf{H} \vphantom{H^2} \right) \leftrightarrow \sf{ 4\bar{d} + 2m + 2\bar{m} + 2a + 2\bar{a} }$

The letter $\mathbf{H}$ is used to note an atom of hydrogen.

$\mathbf{H} \equiv \left\{ \sf{p}^{+}, \sf{e}^{-}, \mathscr{F}_{\! \it{m}} \right\}$

A tour around a quark model of atomic hydrogen.

Notice: this page is under construction
Notice: this page is under construction

To do:

1) the mechanical energy of $\mathscr{F}_{\! \it{m}} ^{ \mathbf{H}}$ is the ionization energy of hydrogen; observed to be 13.6 (eV). The currently assigned values for quark temperatures and energies give a hydrogen ionization energy of about 3 (eV). Both values are about a part in 108 of the energy of H. That is about the level where we expect the hypothesis of conjugate symmetry to break down. So ignore the discrepancy until after an analysis of hydrogen spectroscopy.

2) Update quark assignments in movie and table.

Right.png Next step: displacement of atomic particles.
Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-ShareAlike 3.0 License