Atomic Hydrogen
Atomic Hydrogen
$\Large{ k }$ $\large{ \delta _{\hat{m}} }$ $\large{ \delta _{\hat{e}} }$ $\large{ \delta _{\theta} }$ $\large{ \sf{P}_{\it{k}} }$
1 +1 0 +1 $\sf{2} \bar{\sf{d}} \ \ \sf{\bar{t}} \sf{b} \ \ \sf{2} \sf{m}$
2 0 -1 +1 $\bar{\sf{u}} \ \ \sf{\bar{s}} \sf{c} \ \ \sf{2} \sf{e}$
3 -1 0 +1 $\sf{2} \bar{\sf{d}} \ \ \sf{\bar{t}} \sf{b} \ \ \sf{2} \bar{\sf{a}}$
4 0 +1 +1 $\bar{\sf{u}} \ \ \sf{t} \sf{\bar{b}} \ \ \sf{2} \bar{\sf{g}}$
5 +1 0 -1 $\sf{2} \bar{\sf{d}} \ \ \sf{\bar{t}} \sf{b} \ \ \sf{2} \sf{m}$
6 0 -1 -1 $\bar{\sf{u}} \ \ \sf{\bar{s}} \sf{c} \ \ \sf{2} \sf{e}$
7 -1 0 -1 $\sf{2} \bar{\sf{d}} \ \ \sf{\bar{t}} \sf{b} \ \ \sf{2} \bar{\sf{a}}$
8 0 +1 -1 $\bar{\sf{u}} \ \ \sf{t} \sf{\bar{b}} \ \ \sf{2} \bar{\sf{g}}$

Atomic hydrogen is defined by the union of a proton and an electron, bound together by a magnetic field $\mathcal{M} ^{ \mathbf{H}}$. The magnetic field is represented by

$\mathscr{F}_{\! \it{m}} \left( \mathbf{H} \vphantom{H^2} \right) \leftrightarrow \sf{ 4\bar{d} + 2m + 2\bar{m} + 2a + 2\bar{a} }$

The letter $\mathbf{H}$ is used to note an atom of hydrogen.

$\mathbf{H} \equiv \left\{ \sf{p}^{+}, \sf{e}^{-}, \mathscr{F}_{\! \it{m}} \right\}$

A tour around a quark model of atomic hydrogen.

Notice: this page is under construction
Notice: this page is under construction
Right.png Next step: displacement of atomic particles.
Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-ShareAlike 3.0 License