Comparisons are made with experimental observations1,2,3,4,5,6
A conventional statement of the Rydberg formula
$\begin{align} E_{\sf{Bohr}} = hc \mathcal{R} _{\mathbf{H}} \left( \frac{1}{ {\rm{n}} _{f}^{2} } - \frac{1}{ {\rm{n}} _{i}^{2} } \right) \end{align}$
where $\mathcal{R} _{\mathbf{H}}$ is the Rydberg number for hydrogen
So the models work by requiring that
$\begin{align} hc \mathcal{R} _{\mathbf{H}} = 2 \left| \, H_{chem}^{\mathcal{A}} \vphantom{{H_{chem}^{\large{\gamma}}}^{9}} \right| \end{align}$
This condition is obtained from the distribution of electrochemical quarks, which in the case of atomic hydrogen, is that there are eight quarks of each type. Other conditions and distributions are used to represent observations of atomic bonds, isotopes and hydrogenic atoms.
Here is a link to the most recent version of this content, including the full text.
Hydrogen Isotopes |