Consider a compound quark specified by its quark coefficients $n$. The following numbers may also used to characterize and identify the particle. They are all integer multiples of one eighth, they are quantized. So they are called quantum numbers.
Quantum Number | Definition |
total angular momentum | $\begin{align} 𝘑 \equiv \frac{ \, \left| \, N^{\mathsf{U}} - N^{\mathsf{D}} \, \right| \, }{8} \end{align}$ |
charge | $\begin{align} q \equiv \frac{ {\Delta}n^{\mathsf{T}}-{\Delta}n^{\mathsf{B}}+{\Delta}n^{\mathsf{C}}-{\Delta}n^{\mathsf{S}} }{8} \end{align}$ |
lepton number | $\begin{align} L\equiv \frac{ {\Delta}n^{\mathsf{G}}-{\Delta}n^{\mathsf{E}}+{\Delta}n^{\mathsf{M}}-{\Delta}n^{\mathsf{A}} }{8} \end{align}$ |
baryon number | $\begin{align} B\equiv \frac{ {\Delta}n^{\mathsf{T}}-{\Delta}n^{\mathsf{B}}-{\Delta}n^{\mathsf{C}}+{\Delta}n^{\mathsf{S}} }{ 8 } \end{align}$ |
strangeness | $\begin{align} S\equiv \frac{ {\Delta}n^{\mathsf{D}}-{\Delta}n^{\mathsf{U}}- \left| n^{\mathsf{u}}-n^{\bar{\mathsf{d}}} \right| + \left| n^{\mathsf{d}}-n^{\mathsf{\bar{u}}} \right| \, }{8} \end{align}$ |
Particle Type | Definition |
a boson | $𝘑 = \sf{an \ integer}$ |
a fermion | $𝘑 = \sf{ \text{an integer plus one half}}$ |
a lepton | $B = 0$ and $L \ne 0$ |
a baryon | $B \ne 0$ and $L = 0$ |
a meson | $B = 0$ and $L = 0$ |
a neutral particle | $q = 0$ |
a charged particle | $q \ne 0$ |
a strange particle | $S \ne 0$ |
Particles can also be classified according to these characteristics as noted in the accompanying table. Attributes and identities are quantized because fundamentally WikiMechanics is based on a finite categorical scheme of binary distinctions. Any characteristic defined from quark coefficients is necessarily quantized because quark coefficents are always integers.
Theorem: The net number of quarks in particle $\sf{P }$ and its anti-particle $\overline{\sf{P}}$ are related as
$\rm{\Delta} \it{n} ^{\sf{Z}} \left( \sf{P} \right) = - \rm{\Delta} \it{n}^{\sf{Z}} \left( \sf{\overline{P}} \right)$
so the charge, strangeness, lepton-number and baryon-number of particles and anti-particles have the same absolute value, but opposite signs
$q \left( \sf{P} \right) =- q \left( \sf{\overline{P}} \right)$ $L \left( \sf{P} \right) =- L \left( \sf{\overline{P}} \right)$ $B \left( \sf{P} \right) = -B \left( \sf{\overline{P}} \right)$ $S \left( \sf{P} \right) =- S \left( \sf{\overline{P}} \right)$
But exchanging quarks for anti-quarks does not alter thermodynamic seed counts, so for the angular momentum
$𝘑 \left( \sf{P} \right) = 𝘑 \left( \sf{\overline{P}} \right)$
Here is a link to the most recent version of this content, including the full text.
![]() |
Quantum Numbers |
Summary |
Adjectives | Definition | |
Quantum Numbers | $\sf{\text{Numbers used to identify particles.}}$ | 4-10 |
Adjective | Definition | |
Total Angular Momentum Quantum Number | $\begin{align} 𝘑 \equiv \frac{ \, {\large{\mid}} \, N^{\mathsf{U}} \! -N^{\mathsf{D}} {\large{\mid}} \, }{8} \end{align}$ | 4-11 |
Adjective | Definition | |
Charge | $\begin{align} q \equiv \frac{ {\Delta}n^{\mathsf{T}}-{\Delta}n^{\mathsf{B}}+{\Delta}n^{\mathsf{C}}-{\Delta}n^{\mathsf{S}} }{8} \end{align}$ | 4-12 |
Adjective | Definition | |
Lepton Number | $\begin{align} L\equiv \frac{ {\Delta}n^{\mathsf{G}}-{\Delta}n^{\mathsf{E}}+{\Delta}n^{\mathsf{M}}-{\Delta}n^{\mathsf{A}} }{8} \end{align}$ | 4-13 |
Adjective | Definition | |
Baryon Number | $\begin{align} B\equiv \frac{ {\Delta}n^{\mathsf{T}}-{\Delta}n^{\mathsf{B}}-{\Delta}n^{\mathsf{C}}+{\Delta}n^{\mathsf{S}} }{ 8 } \end{align}$ | 4-14 |
Adjective | Definition | |
Strangeness | $\begin{align} S\equiv \frac{ {\Delta}n^{\mathsf{D}}-{\Delta}n^{\mathsf{U}}- \mid n^{\mathsf{u}}-n^{\bar{\mathsf{d}}} \mid + \mid n^{\mathsf{d}}-n^{\mathsf{\bar{u}}} \mid \, }{8} \end{align}$ | 4-15 |
Noun | Definition | |
Lepton | $B=0 \ \ \text{and} \ \ L \ne 0$ | 4-16 |
Noun | Definition | |
Baryon | $B \ne 0 \ \ \text{and} \ \ L = 0$ | 4-17 |
Noun | Definition | |
Meson | $B=0 \ \ \text{and} \ \ L = 0$ | 4-18 |
Noun | Definition | |
Neutral Particle | $q=0$ | 4-19 |
Noun | Definition | |
Boson | $𝘑 \, = \sf{\text{ an integer}}$ | 4-20 |
Noun | Definition | |
Fermion | $𝘑 \, = \sf{\text{ an integer plus one half}}$ | 4-21 |