Magnetic Moment Calculations
 Notice: this page is actively under construction
• Data compression is modest. Ten adjustable parameters are used to express observations of thirteen particles. The magnetic susceptibility of the up, down and muonic quarks can be expressed as simple functions of the electron, proton and muon moments and rest masses as follows

\begin{align} \chi_{m}^{\sf{D}} = \left(\frac{2 \pi \, \mu_{N} }{ k_{q} \, h }\right) \, m^{\sf{p}^{+}} \mu^{\sf{p}^{+}} - \chi_{m}^{\sf{T}} + \chi_{m}^{\sf{B}} \end{align}

\begin{align} \chi_{m}^{\sf{U}} = \left(\frac{2 \pi \, \mu_{N} }{ k_{q} \, h }\right) \, m^{\sf{e}^{-}} \mu^{\sf{e}^{-}} - \chi_{m}^{\sf{G}} + \chi_{m}^{\sf{E}} + \frac{ \chi_{m}^{\sf{T}} - \chi_{m}^{\sf{B}} - \chi_{m}^{\sf{S}} +\chi_{m}^{\sf{C}}}{2} \end{align}

\begin{align} \chi_{m}^{\sf{M}} = \left(\frac{2 \pi \, \mu_{N} }{ k_{q} \, h }\right) \, m^{\mu^{-}} \mu^{\mu^{-}} - \chi_{m}^{\sf{U}} + \chi_{m}^{\sf{A}} + \frac{ \chi_{m}^{\sf{T}} - \chi_{m}^{\sf{B}} - \chi_{m}^{\sf{S}} +\chi_{m}^{\sf{C}}}{2} \end{align}

where $\mu_{N}$ is the nuclear magneton.

• Other formulae used for the calculation are given here.
• For a spreadsheet that details these calculations, click here.

page revision: 14, last edited: 12 Jan 2015 04:49