Subatomic Neutrinos

Consider a neutrino $\nu$ described by a repetitive chain of events

$\Psi ( \nu ) = \left( \sf{\Omega}_{1}, \sf{\Omega}_{2}, \sf{\Omega}_{3} \ \ldots \ \right)$

where quarks are parsed into eight components

$\sf{\Omega} = \left\{ \sf{P}_{\! 1}, \sf{P}_{\! 2}, \sf{P}_{\! 3}, \sf{P}_{\! 4}, \sf{P}_{\! 5}, \sf{P}_{\! 6}, \sf{P}_{\! 7}, \sf{P}_{\! 8} \right\}$

as shown in the accompanying tables. The event $\sf{\Omega}$ cannot always satisfy the conditions for being a full space-time event because there are not always enough quarks to determine the magnetic polarity $\delta _{\hat{m}}$ or electric polarity $\delta _{\hat{e}}$. So we just assert that quarks are distributed as shown These conventions are called three dimensional models of neutrinos.

## Muonic Anti-Neutrino

$\sf{\Omega} ( \bar{\nu}_{\sf{\mu}} ) = \mathrm{4}\bar{\sf{a}} + \mathrm{4}\sf{m}+ \mathrm{4}\bar{\sf{u}}$

 Muonic Anti-Neutrino
 $\sf{P}_{\! \it{k}}$ $\delta _{\hat{m}}$ $\delta _{\hat{e}}$ $\delta _{\theta}$ quarks 1 +1 0 +1 $\sf{2m}$ 2 0 +1 +1 $\sf{\bar{u}}$ 3 -1 0 +1 $\sf{2\bar{a}}$ 4 0 -1 +1 $\sf{\bar{u}}$ 5 +1 0 -1 $\sf{2m}$ 6 0 +1 -1 $\sf{\bar{u}}$ 7 -1 0 -1 $\sf{2\bar{a}}$ 8 0 -1 -1 $\sf{\bar{u}}$
 A three-dimensional quark model of a muonic anti-neutrino.

## Electronic Neutrino

$\sf{\Omega} ( \nu_{\sf{e}} ) = \mathrm{4}\bar{\sf{g}} + \mathrm{4}\sf{e}+ \mathrm{4}\sf{u}$

 Electronic Neutrino
 $\sf{P}_{\! \it{k}}$ $\delta _{\hat{m}}$ $\delta _{\hat{e}}$ $\delta _{\theta}$ quarks 1 +1 0 +1 $\sf{u}$ 2 0 +1 +1 $\sf{2e}$ 3 -1 0 +1 $\sf{u}$ 4 0 -1 +1 $\sf{2\bar{g}}$ 5 +1 0 -1 $\sf{u}$ 6 0 +1 -1 $\sf{2e}$ 7 -1 0 -1 $\sf{u}$ 8 0 -1 -1 $\sf{2\bar{g}}$
 A three-dimensional quark model of an electronic neutrino.

Related WikiMechanics articles.

page revision: 56, last edited: 29 Jul 2016 15:27