The following quantities are defined from a particle's dynamic quarks. They establish an orientation in quark space and are also used to describe displacements in ordinary Euclidean space.

## Magnetic Polarity

$\delta _{\hat{m}} \equiv \begin{cases} +1 \; \; &\sf{\text{if}} \; \; &\it{N}^{\, \mathsf{M}} > \it{N}^{\, \mathsf{A}} \\ \; \; 0 \; \; &\sf{\text{if}} \; \; &\it{N}^{\, \mathsf{M}} \; \sf{=} \; \, \it{N}^{\, \mathsf{A}} \\ -1 \; \; &\sf{\text{if}} \; \; &\it{N}^{\, \mathsf{M}} < \it{N}^{\, \mathsf{A}} \end{cases}$

Let particle P be characterized by $N^{ \mathsf{M}}$ and $N^{\mathsf{A}}$ the coefficients of its muonic seeds. These quantities are used to define another number $\delta _{\hat{m}}$ called the **magnetic polarity** of P. If $\delta _{\hat{m}}=+1$ then northern seeds are more numerous than southern seeds and we say that P is oriented to the north. If P is part of a magnet, we might even call it a north *pole*. If southern seeds predominate then we say that P is directed to the south, or perhaps aligned in a southerly direction. Finally if $\delta _{\hat{m}}= \,0$ then we say that P is not magnetically polarized. Sensory interpretation: Muonic seeds are objectified from red and green sensations. So $\delta _{\hat{m}}$ is a binary description of whether a complicated visual sensation is more reddish or greenish. If $\delta _{\hat{m}}= \,0$ then P is not remarkably red or green.

## Electric Polarity

$\delta _{\hat{e}} \equiv \begin{cases} +1 \; \; &\sf{\text{if}} \; \; &\it{N}^{\, \mathsf{G}} > \it{N}^{\, \mathsf{E}} \\ \; \; 0 \; \; &\sf{\text{if}} \; \; &\it{N}^{\, \mathsf{G}} \; \sf{=} \; \, \it{N}^{\, \mathsf{E}} \\ -1 \; \; &\sf{\text{if}} \; \; &\it{N}^{\, \mathsf{G}} < \it{N}^{\, \mathsf{E}} \end{cases}$

Let P also be characterized by the coefficients of its electronic seeds, $N^{ \mathsf{E}}$ and $N^{\mathsf{G}}$. These numbers are used to define another quantity $\delta_{\hat{e}}$ called the **electric polarity** of P. If $\delta _{\hat{e}}=+1$ then positive seeds are more numerous than negative seeds and we say that P is positive too. If P is part of a battery, we might even call it a positive *electrode*. If negative seeds predominate then we may say that P is oriented or aligned in a negative direction. If $\delta_{\hat{e}} = 0$ then P is not electrically polarized. And finally, if $\delta_{\hat{e}}$ and $\delta_{\hat{m}}$ are both zero, then we say that P is **centered** on the electric and magnetic axes. Sensory interpretation: Electronic seeds are objectified from yellow and blue sensations. So $\delta _{\hat{e}}$ is a binary description of whether a complex visual sensation is more yellowish or bluish. If P in not clearly yellowish or bluish, then $\delta _{\hat{e}}= \,0$. And if both of $\delta _{\hat{m}}$ and $\delta _{\hat{e}}$ are zero, then P is a colorless or achromatic sensation.

## Helicity

$\delta _{z} \equiv \begin{cases} +1 \; \; &\sf{\text{if}} \; \; &N^{\mathsf{U}} \; > \; N^{\mathsf{D}} \\ \; \; 0 \; \; &\sf{\text{if}} \; \; &N^{\mathsf{U}} \; = \, N^{\mathsf{D}} \\ -1 \; \; &\sf{\text{if}} \; \; &N^{\mathsf{U}} \; < \; N^{\mathsf{D}} \end{cases}$

Finally, let P be characterized by $N^{\mathsf{U}}$ and $N^{\mathsf{D}}$ the coefficients of its rotating seeds. These numbers are used to define $\delta_{z}$ as the **helicity** of P. If $\delta _{z} > 0$ then we say that P is a spin-up particle. Conversely, if $\delta_{z} < 0$ then P is called a spin-down particle. And if $\delta_{z}=0$ then we say that P is not rotating. Sensory interpretation: Rotating quarks are objectified from achromatic visual sensations. So $\delta_{z}$ is a binary description of whether a complicated greyish vision is more bright or dark.

Summary |

Adjective | Definition | |

Helicity | $\delta _{z} \equiv \begin{cases} +1 \; \; &\sf{\text{if}} \; \; &N^{\mathsf{U}} \; > \; N^{\mathsf{D}} \\ \; \; 0 \; \; &\sf{\text{if}} \; \; &N^{\mathsf{U}} \; = \, N^{\mathsf{D}} \\ -1 \; \; &\sf{\text{if}} \; \; &N^{\mathsf{U}} \; < \; N^{\mathsf{D}} \end{cases}$ | 5-38 |

Noun | Definition | |

Centered Particle | $N^{\mathsf{A}} = N^{\mathsf{M}} \; \; \; \; \; \; {\sf{\text{and}}} \; \; \; \; \; \; N^{\mathsf{G}}= N^{\mathsf{E}}$ | 5-37 |

Adjective | Definition | |

Electric Polarity | $\delta _{\hat{e}} \equiv \begin{cases} +1 \; \; &\sf{\text{if}} \; \; &\it{N}^{\, \mathsf{G}} > \it{N}^{\, \mathsf{E}} \\ \; \; 0 \; \; &\sf{\text{if}} \; \; &\it{N}^{\, \mathsf{G}} \; \sf{=} \; \, \it{N}^{\, \mathsf{E}} \\ -1 \; \; &\sf{\text{if}} \; \; &\it{N}^{\, \mathsf{G}} < \it{N}^{\, \mathsf{E}} \end{cases}$ | 5-36 |

Adjective | Definition | |

Magnetic Polarity | $\delta _{\hat{m}} \equiv \begin{cases} +1 \; \; &\sf{\text{if}} \; \; &\it{N}^{\, \mathsf{M}} > \it{N}^{\, \mathsf{A}} \\ \; \; 0 \; \; &\sf{\text{if}} \; \; &\it{N}^{\, \mathsf{M}} \; \sf{=} \; \, \it{N}^{\, \mathsf{A}} \\ -1 \; \; &\sf{\text{if}} \; \; &\it{N}^{\, \mathsf{M}} < \it{N}^{\, \mathsf{A}} \end{cases}$ | 5-35 |

Noun | Definition | |

Spin-Down Particles | $N^{ \mathsf{U}} < N^{ \mathsf{D}}$ | 5-32 |

Noun | Definition | |

Non-Rotating Particles | $N^{ \mathsf{U}} = N^{ \mathsf{D}}$ | 5-31 |

Noun | Definition | |

Spin-Up Particles | $N^{ \mathsf{U}} > N^{ \mathsf{D}}$ | 5-30 |