## Magnetic Polarity

$\delta _{\hat{m}} \equiv \begin{cases} +1 \ \ &\sf{\text{if}} \ \ &\it{N}^{\, \mathsf{M}} > \it{N}^{\, \mathsf{A}} \\ \ \ 0 \ \ &\sf{\text{if}} \ \ &\it{N}^{\, \mathsf{M}} \ \sf{=} \ \, \it{N}^{\, \mathsf{A}} \\ -1 \ \ &\sf{\text{if}} \ \ &\it{N}^{\, \mathsf{M}} < \it{N}^{\, \mathsf{A}} \end{cases}$

Let particle P be characterized by $N^{ \mathsf{M}}$ and $N^{\mathsf{A}}$ the coefficients of its muonic seeds. Definition: the number $\delta _{\hat{m}}$ is called the **magnetic polarity** of P. If $\delta _{\hat{m}}=+1$ then we say that P is oriented to the **north**. If austral seeds predominate then we say that P is more to the **south**. If $\delta _{\hat{m}}= \,0$ we say that P is is not oriented on the magnetic axis.

## Electric Polarity

$\delta _{\hat{e}} \equiv \begin{cases} +1 \ \ &\sf{\text{if}} \ \ &\it{N}^{\, \mathsf{G}} > \it{N}^{\, \mathsf{E}} \\ \ \ 0 \ \ &\sf{\text{if}} \ \ &\it{N}^{\, \mathsf{G}} \ \sf{=} \ \, \it{N}^{\, \mathsf{E}} \\ -1 \ \ &\sf{\text{if}} \ \ &\it{N}^{\, \mathsf{G}} < \it{N}^{\, \mathsf{E}} \end{cases}$

Let particle P be characterized by $N^{ \mathsf{E}}$ and $N^{\mathsf{G}}$ the coefficients of its electronic seeds. Definition: the number $\delta _{\hat{e}}$ is called the **electric polarity** of P. If good seeds predominate then we say that P is oriented in a **positive** direction. If evil seeds are more prominent then we say that P is oriented in a **negative** direction. If $\delta _{\hat{e}}= \,0$ we say that P is not oriented on the electric axis.

## Helicity

$\delta _{z} \equiv \begin{cases} +1 \ \ &\sf{\text{if}} \ \ &\mathrm{\Delta}n^{\mathsf{U}} > \mathrm{\Delta}n^{\mathsf{D}} \\ \ \ 0 \ \ &\sf{\text{if}} \ \ &\mathrm{\Delta}n^{\mathsf{U}} \ \sf{=} \ \, \mathrm{\Delta}\it{n}^{\mathsf{D}} \\ -1 \ \ &\sf{\text{if}} \ \ &\mathrm{\Delta}n^{\mathsf{U}} < \mathrm{\Delta}n^{\mathsf{D}} \end{cases}$

Let P be characterized by ${\Delta}n^{\mathsf{U}}$ and ${\Delta}n^{\mathsf{D}}$ the coefficients of its rotating quarks. Definition: the number $\delta _{z}$ is called the **helicity** of P. If $\delta _{z} > 0$ we say that P's orbit is a **clockwise** helix. If $\delta _{z}<0$ we say P has a **counterclockwise** helical orbit. And if $\delta _{z}=0$ we say that P's orbit is not oriented with respect to the polar axis. By convention $\delta _{z}=1$ for ordinary material particles.