Spatial Orientation

The following numbers are defined from a particle's dynamic quark content. They are intrinsic characteristics that establish a particle's orientation in quark space. They are also used to describe displacement in ordinary Euclidean space.

Magnetic Polarity

$\delta _{\hat{m}} \equiv \begin{cases} +1 \ \ &\sf{\text{if}} \ \ &\it{N}^{\, \mathsf{M}} > \it{N}^{\, \mathsf{A}} \\ \ \ 0 \ \ &\sf{\text{if}} \ \ &\it{N}^{\, \mathsf{M}} \ \sf{=} \ \, \it{N}^{\, \mathsf{A}} \\ -1 \ \ &\sf{\text{if}} \ \ &\it{N}^{\, \mathsf{M}} < \it{N}^{\, \mathsf{A}} \end{cases}$

Let particle P be characterized by $N^{ \mathsf{M}}$ and $N^{\mathsf{A}}$ the coefficients of its muonic seeds. Definition: The number $\delta _{\hat{m}}$ is called the magnetic polarity of P. If $\delta _{\hat{m}}=+1$ then we say that P is oriented to the north. If austral seeds predominate then we say that P is more aligned to the south. If $\delta _{\hat{m}}= \,0$ we say that P is not magnetically polarized.

Bangladeshi.GIF
Sensory interpretation: Muonic seeds are objectified from red and green Anaxagorean sensations. So $\delta _{\hat{m}}$ is a binary description of whether a complicated visual sensation is more reddish or greenish. If P is not an organic chromatic sensation, then $\delta _{\hat{m}}= \,0$.

Electric Polarity

$\delta _{\hat{e}} \equiv \begin{cases} +1 \ \ &\sf{\text{if}} \ \ &\it{N}^{\, \mathsf{G}} > \it{N}^{\, \mathsf{E}} \\ \ \ 0 \ \ &\sf{\text{if}} \ \ &\it{N}^{\, \mathsf{G}} \ \sf{=} \ \, \it{N}^{\, \mathsf{E}} \\ -1 \ \ &\sf{\text{if}} \ \ &\it{N}^{\, \mathsf{G}} < \it{N}^{\, \mathsf{E}} \end{cases}$

Let P be characterized by $N^{ \mathsf{E}}$ and $N^{\mathsf{G}}$ the coefficients of its electronic seeds. Definition: The number $\delta _{\hat{e}}$ is called the electric polarity of P. If good seeds predominate then we say that P is oriented in a positive direction. If evil seeds are more prominent then we say that P is aligned in a negative direction. If $\delta _{\hat{e}}= \,0$ we say that P is not electrically polarized.

Swedish.gif
Sensory interpretation: Electronic seeds are objectified from yellow and blue Anaxagorean sensations. So $\delta _{\hat{e}}$ is a binary description of whether a complex visual sensation is more yellowish or bluish. If P in not clearly yellowish or bluish, then $\delta _{\hat{e}}= \,0$. If P is an achromatic sensation, then both of $\delta _{\hat{m}}$ and $\delta _{\hat{e}}$ are zero, then we say that P is centered on the electric and magnetic axes.

Helicity

$\delta _{z} \equiv \begin{cases} +1 \ \ &\sf{\text{if}} \ \ &N^{\mathsf{U}} \ > \ N^{\mathsf{D}} \\ \ \ 0 \ \ &\sf{\text{if}} \ \ &N^{\mathsf{U}} \ = \, N^{\mathsf{D}} \\ -1 \ \ &\sf{\text{if}} \ \ &N^{\mathsf{U}} \ < \ N^{\mathsf{D}} \end{cases}$

Let P be characterized by $N^{\mathsf{U}}$ and $N^{\mathsf{D}}$ the coefficients of its rotating seeds. Definition: The number $\delta _{z}$ is called the helicity of P. If $\delta _{z} > 0$ we say that P's orbit is a clockwise helix. If $\delta _{z}<0$ we say P has a counterclockwise helical orbit. And if $\delta _{z}=0$ we say that P's orbit is not oriented with respect to the polar axis.

achromatic.jpg
Sensory interpretation: Rotating quarks are objectified from perceptions of brightness. So $\delta _{z}$ could be interpreted as some simplified account of the direction of illumination.

Summary
Adjective Definition
Magnetic Polarity $\delta _{\hat{m}} \equiv \begin{cases} +1 \ \ &\sf{\text{if}} \ \ &\it{N}^{\, \mathsf{M}} > \it{N}^{\, \mathsf{A}} \\ \ \ 0 \ \ &\sf{\text{if}} \ \ &\it{N}^{\, \mathsf{M}} \ \sf{=} \ \, \it{N}^{\, \mathsf{A}} \\ -1 \ \ &\sf{\text{if}} \ \ &\it{N}^{\, \mathsf{M}} < \it{N}^{\, \mathsf{A}} \end{cases}$ 5-35
Adjective Definition
Electric Polarity $\delta _{\hat{e}} \equiv \begin{cases} +1 \ \ &\sf{\text{if}} \ \ &\it{N}^{\, \mathsf{G}} > \it{N}^{\, \mathsf{E}} \\ \ \ 0 \ \ &\sf{\text{if}} \ \ &\it{N}^{\, \mathsf{G}} \ \sf{=} \ \, \it{N}^{\, \mathsf{E}} \\ -1 \ \ &\sf{\text{if}} \ \ &\it{N}^{\, \mathsf{G}} < \it{N}^{\, \mathsf{E}} \end{cases}$ 5-36
Noun Definition
Centered Particle $N^{\mathsf{A}} = N^{\mathsf{M}} \ \ \ \ \ \ {\sf{\text{and}}} \ \ \ \ \ \ N^{\mathsf{G}}= N^{\mathsf{E}}$ 5-37
Adjective Definition
Helicity $\delta _{z} \equiv \begin{cases} +1 \ \ &\sf{\text{if}} \ \ &N^{\mathsf{U}} \ > \ N^{\mathsf{D}} \\ \ \ 0 \ \ &\sf{\text{if}} \ \ &N^{\mathsf{U}} \ = \, N^{\mathsf{D}} \\ -1 \ \ &\sf{\text{if}} \ \ &N^{\mathsf{U}} \ < \ N^{\mathsf{D}} \end{cases}$ 5-38
Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-ShareAlike 3.0 License